
Time Format Keyword Proposal

Background:

A goal of the PDS label is to describe data in a standardized way such that generic software can be written
to read and manipulate the data file based on the content of the label. One of the original PDS mandates
was to develop a set of standards that allow data formats to be described and not prescribed. It was clear
that numerous data formats were already in existence and that pre-existing software (analysis and display)
require data to be in these formats. In addition, different forms of data inherently lend themselves to different
data file architectures. The flexibility of the PDS label to describe these forms is it's most valuable and
saleable asset. PDS does not need to tell scientists that they must reformat their data into some prescribed
format the way that data systems based on HDF or CDF formats must.

However there is currently a problem with the existing PDS label that is making the development of generic
software for the access and graphic display of time ordered data sets difficult at best. The time tag within
these data sets is not identified in a machine-readable form. The present labels must use some combination
of the NAME and DESCRIPTION fields to distinguish time columns within data files unless the time column
is in PDS standard time format. There is a standard value for the DATA_TYPE keyword that is TIME but this
value means PDS formatted time. Through this oversight, the PDS label is effectively prescribing a time
format for data sets.

Proposal:

PPI is proposing a new set of keywords for use in data file labels that are used to describe the format of time
columns (character strings). The primary new keyword is TIME_FORMAT. This keyword is used to modify
the meaning of the keyword-value pair DATA_TYPE = TIME. It can only be used in data element (column,
field) definitions where the DATA_TYPE is set to TIME. If the TIME_FORMAT keyword does not appear in
the data element object, then DATA_TYPE=TIME will have the default interpretation of time in PDS standard
time format. This caveat provides backward compatibility with existing labels. This proposal does not alter in
any way the requirement that catalog data (templates) still require time in PDS standard format. PDS is fully
justified in prescribing the format of metadata.

The values that TIME_FORMAT can take will be based on a formation rule construct using a set of element
tokens that are themselves are part of a standard value set. The list of standard value tokens can grow as
needed like any other standard value set. However, since software that will be written that interprets these
tags, it is clearly in our best interest to define a comprehensive list up front so that future additions will be
minimal.

The label construct will go something like:

 OBJECT = COLUMN
 NAME = "START TIME"
 DATA_TYPE = TIME
 TIME_FORMAT = "xxxxxxxxxxxxxxxx"
 BYTES = string length of all characters that form the time tag
 .
 .
 .
 END_OBJECT = COLUMN

There is one other keyword (REFERENCE_TIME) that can be used to clarify the value assigned to
TIME_FORMAT.

This proposal contains an initial set of tokens as discussion starting point. Any character within the specified
element (column) that is not explicitly described by a token is interpreted as a literal character. Floating-
point forms are terminated either by a non-numeric character or an end of the field (out of bytes). Any
precision can be specified. Any date/time element that is not specified is assumed to be zero. However by
not specifying lower order date/time elements a precision is implied. The % character is used as the token
delimiter at both ends (start/end) of the proposed tokens. The parsing of the time format string by software
will be made easier by using both leading and trailing delimiters.

There are two classes of tokens (specific and generic) that are required to provide the necessary generality.
Specific tokens describe values that are themselves part of a standard value set. Examples are tokens that
describing things like "month", "day of month", "hour of day", etc. These values are typically character strings
or non-negative integers. Generic tokens are used to describe relative time or date elements that do not
lend themselves to such rigid definitions. Generic tokens are used to describe numeric time/date elements
that may be positive or negative and whose reference origin may not be a traditional date/time origin.
Examples of time elements that must be described by a generic token are 'seconds after periapsis',
'fractional seconds', 'fractional day since launch', etc. A generic token describes a value that can either be
referenced to another value (next largest date/time token) within the TIME_FORMAT string, or to an origin
defined by using the REFERENCE_TIME keyword. This keyword is used to provide a zero reference for
generic date/time tokens when none is provided within the data file. The reference 'time' within the
REFERENCE_TIME keyword must be stated to implied precision of the token it modifies.
REFERENCE_TIME values are given in the PDS standard date/time format YYYY-MM-DDThh:mm:ss.s[s].

The selection of tokens used to describe a time word is non-unique. This is not a problem or concern. As
long as interpretation of the time format tokens results in a unique time value the time word is properly
described. Both the time format tokens and the elements of a time string that they identify are explicitly case
insensitive. Users should not attribute any particular meaning to the use of all uppercase in the token
specification below. Spacecraft clock formats are specifically excluded from this usage. Spacecraft clock
values already have a set of descriptive keywords.

Each of the tokens are described as follows:
__
 %YEAR% is the four-digit integer year token.
 %YR% is the two-digit integer year token. Values greater then 50 are referenced to 1900 and values
 less or equal to 50 are referenced to 2000 unless modified by an REFERENCE_TIME keyword.
 %YEARBC% is the four-digit integer year BC token.
 %FYEAR% is the generic fractional year token. There can be any number of digits before the decimal
 point, however, four should be sufficient for most data sets. If less than 4 digits precede the decimal
 point, leading zeros are implied. This token may be used to indicate fractional years since some
 starting date/time by using the REFERENCE_TIME keyword to specify the reference date/time.
 If the REFERENCE_TIME token is not used, FYEAR is referenced to 0001 AD for positive
 values and negative values indicate years BC.
 %MM% is the two-digit integer month token. If only one digit is found, then a leading zero is implied.
 Valid range is 1-12.
 %MON% is the three character month abbreviation token from the set
 {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP, OCT, NOV, DEC}.
 The set is not case sensitive so that Jan = jan = JAN.
 %MONTH% is the full month name (English) token where month is from the set {January, February,
 March, April, May, June, July, August, September, October, November, December}. The month
 value is not case sensitive so that May = may = MAY.
 %DD% is the two-digit integer day of month token. If only one digit is found, then a leading zero is
 implied. Valid range is 1-31.
 %DAY% alias for %DD%
 %DOY% is a three-digit integer day of year token where Jan 1 = 001. If less than three digits are found
 then leading zero's are implied. Valid range is 1-366
 %DOY1% alias for %DOY%

 %DOY0% is a three-digit integer day of year token where Jan 1 = 000. If less than three digits are found
 then leading zero's are implied. Valid range is 0-365
 %FDAY% is the generic fractional day token. The field is terminated by a non-numeric character or
 when the column BYTES is reached. FDAY can be either floating point or integer and can be either
 positive or negative. The start (FDAY=0.0) date/time for the generic FDAY counter can be specified
 by a year elsewhere in the TIME_FORMAT string or by using the REFERENCE_TIME keyword.
 Julian dates (absolute and relative) are specified by using the FDAY token and a
 REFERENCE_TIME keyword that specifies the reference date/time.
 FDAY can be used with TIME_FORMAT tokens that specify time of day.
 %HR% is the two digit integer hour of day token. If only one digit is found, then a leading zero is implied.
 Valid range is 0-23.
 %FHR% is the generic fractional hour token. The field is terminated by a non-numeric character or
 when the column BYTES is reached. FHR can be either floating point or integer and can be either
 positive or negative. The start date/time for the generic FHR can be set elsewhere in the
 TIME_FORMAT string by the next largest time element token (default) or by using the
 REFERENCE_TIME keyword to specify the reference date/time.
 %MIN% is the two-digit integer minute of hour token. If only one digit is found, then a leading zero is
 implied. Valid range is 0-59.
 %FMIN% is the generic fractional minute token. The field is terminated by a non-numeric character or
 when the column BYTES is reached. FMIN can be either floating point or integer and can be either
 positive or negative. The start date/time for the generic FMIN can be set elsewhere in the
 TIME_FORMAT string by the next largest time element token (default) or by using the
 REFERENCE_TIME keyword to specify the reference date/time.
 %SEC% is the two-digit second of minute token. If only one digit is found, then a leading zero is implied.
 The valid range is 0-59.
 %FSEC% is the generic fractional second token. The field is terminated by a non-numeric character or
 when the column BYTES is reached. FSEC can be either floating point or integer and can be either

positive or negative. The start date/time for the generic FSEC is set by the next largest time element
token in the TIME_FORMAT string.

 %ESEC% is the total elapsed fractional seconds (including leapseconds) since some reference time.
Values can be positive, negative, or zero. The REFERENCE_ TIME keyword is used to specify the
date/time origin.

 %USEC% is the total elapsed fractional UTC seconds (no leapseconds) since some reference time.
Values can be positive, negative, or zero. The REFERENCE_ TIME keyword is used to specify the
date/time origin.

 %MSEC% is the three-digit integer millisecond of second token. If less than 3 digits are found, then
 leading zeros are implied. The valid range is 0-999.
 %FMSEC% is the generic fractional millisecond token. The field is terminated by a non-numeric
 character or when the column BYTES is reached. FMSEC can be either floating point or integer and
 can be either positive or negative. The start date/time for the generic FMSEC is set by the

next largest time element token in the TIME_FORMAT string.

__

Usage Examples:
 All representations given below are for the same time.

 1994-08-17T03:31:27.400Z PDS standard formatted time
 TIME_FORMAT = "%YEAR%-%MM%-%DD%T%HR%:%MIN%:%SEC%.%MSEC%"
 = "%YEAR%-%MM%-%DD%T%HR%:%MIN%:%FSEC%"

 August 17, 1994 03:31:27.400
 TIME_FORMAT = "%MONTH% %DD%, %YEAR% %HR%:%MIN%:%SEC%.%MSEC%"

 94229 12687.4 Standard date/time form used by PVO mission
 TIME_FORMAT = "%YR%%DOY% %FSEC%"

 903324087.400 Commonly called Clinetime after Neal Cline
 TIME_FORMAT = "%USEC%
 REFERENCE_ TIME = 1966-01-01T00:00:00.000 - 1 millisecond precision implied

 1994 228.14684 FDAY takes origin to be 1984-01-01 00:00:00 UT
 TIME_FORMAT = "%YEAR% %FDAY% Value above has 1 second precision

 228.14684 Year omitted in data file, reference time required
 TIME_FORMAT = "%FDAY%

 REFERENCE_ TIME = 1994-01-01T00:00:00 - 1 second precision implied

Impact:

The primary impacts of adopting proposal will be in the software and documentation area. Software that are
may be impacted includes TBTOOL, NASAVIEW, and the label/volume verifier software (VV, SLVTOOL,
TOOLD). Since this software does not affect the interpretation of time in catalog templates, there should be
NO IMPACT ON THE CATALOG LOADER OR DATA INGESTION.

 TBTOOL - will complain that the label contains an unknown keyword but will still allow users to view table
 contents. This response has been verified.

 NASAVIEW - same response as TBTOOL (verified). However, if NASAVIEW is upgraded to provide a
 graphics capability for tables (already supported for tables generated from NIMS cubes) then it would be
 natural to allow users to plot tabular data vs. time that would require a parsing capability for time formats.

 VV - The label verifier component of this software (SLVTOOL) should be modified to validate the usage of
 this keyword and it's valid values. I expect that w/o modification the software will simply complain about
 an unknown keyword (repeatedly!) and then fail to validate the proper formation of the value.

 DOCUMENTATION - Time and time formats are discussed throughout the various PDS standards
 documents (STANDARDS REF, DATA PREPARER'S WORKBOOK, DATA DICTIONARY). All of these
 documents would have to be updated to reflect the impact of this new keyword/value pair.

 L3 - The easiest way to implement the changes in the various PDS tools is to update the underlying library.
 The parsing of TIME_FORMAT values should be added to L3.

